Reactions of Azoxybenzene with Dichlorocarbene in the Phase-transfer-catalyzed System

Shizen Sekiguchi,* and Tomohisa Fujiu

Department of Synthetic Chemistry, Faculty of Engineering, Gunma University,

Ten-jin cho, Kiryu, Gunma 376

(Received March 8, 1984)

Synopsis. Azoxybenzene (1) reacted with dichlorocarbene (2) at 40 °C in the presence of a phase-transfer catalyst (18-crown-6 or tributylamine) in a binary solvent (CHCl₃-aqueous KOH), giving 2,2,3,3-tetrachloro-1-phenylaziridine (4), azobenzene (5), and 2-hydroxy-1-phenylbenzimidazole.

The phase-transfer technique has been regarded as a useful tool in improving the preparative processes and syntheses used in laboratories. Although the reactions of dihalocarbenes with olefins, 1-3) amides, 4) imines, 5) alcohols and adamantane 7) have already been studied, only a few studies involving the addition of dichlorocarbenes to -N(O)=N- (azoxy) bonds have been published.

Seyferth and his coworkers have reported the reaction of azoxybenzene (1) with dichlorocarbene (2) in benzene, in which phenyl(bromodichloromethyl)mercury (PhHgCCl₂Br) was used as a source reagent of 2. They found that 1,1-dichloro-N-phenylmethanimine (3, yield 3%), 2,2,3,3-tetrachloro-1-phenylaziridine (4, yield 12%) and azobenzene (5, yield 6%) were formed (Eq. 1).89

Ph-N=N-Ph

Ph-N=Ph

80 C, 3 hr

Ph-N=CCl₂ + PhN
$$< \frac{CCl_2}{CCl_2} + Ph-N=N-Ph$$

3 4 5

We have also carried out a reaction of 1 with 2 in the presence of 18-crown-6 or tributylamine as a phase-transfer catalyst (PTC) under the phase-transfer-catalyzed conditions (50% aqueous KOH-CHCl₃), in which the different products, except for 4 and 5, were formed (Eq. 2). The results are indicated in Table 1.

$$1 \xrightarrow{\text{PTC}} 4 + \text{Ph-N=N-Ph} + \bigwedge_{N}^{\text{Ph}} \text{OH} \qquad (2)$$

Azobenzene (5) is probably formed *via* the following path (Eq. 3).^{9,10)} In such polar solvents as chloroform

$$1 + 2 \longrightarrow \begin{bmatrix} Ph - N - Ph \\ 0 \\ c1 \end{bmatrix} \longrightarrow 5 + o = cc1_2 \quad (3)$$

the intermediate shown in the bracket (Eq. 3) might reasonably be considered to intervene with the electrophilic character of 2.

Further, in order to elucidate the formation path of 4 and 6, a reaction of 5 with 2 under the same conditions described in Table 1 (PTC tributylamine; temp 40 °C; time 4 h) was carried out, in which 4 and 6 were formed in 31.0 and 15.5% yields (based on 5 consumed), respectively. These results would indicate that 4 and 6 are formed via the following path (Eq. 4).¹¹⁾

$$5 + 2 \longrightarrow \begin{bmatrix} Ph - N + Ph \\ C1 & C1 \end{bmatrix} \longrightarrow \begin{bmatrix} Ph & Ph \\ N & C1 \\ 8 & 9 \end{bmatrix} \xrightarrow{Ph} C1$$

$$3 \quad 11 \quad N \downarrow C1$$

$$N \downarrow C1$$

It is not clear, at present, whether the N-N bond fission in 7 is heterolytic or homolytic. The intermediacy of 7, however, is reasonable from considering the formation of 4 and 6.11,12 As is shown in Eq. 3, the abstraction of an oxygen atom by 2 is interesting and such a reductive function of 2 would be excepted to attract attention.

Table 1. Reaction of azoxybenzene with dichlorocarbene in the presence of phase transfer catalysts

1 mmol	CHCl ₃	aq KOH (50%) mmol	Temp °C	Time	Product/%a)			Conv.
					4	5	6	%
			18-Crown-6b)					
			40	10	36.8	3.0	1.7	35.0
30.0	419	446	Tributylamine ^{c)}					
			40	4	42.0	5.3	8.5	37.6
			10	24	32.2	6.1	4.2	37.1

a) Based on the azoxybenzene consumed. b) 18-Crown-6 0.76 mmol. c) Tributylamine 0.76 mmol.

Experimental

General Comments. The products were identified using NMR and MS spectrometers, UV and IR spectrophotometers, and elemental analyses. All the capillary melting points were uncorrected.

Preparation of Azoxybenzene (1). Following a method described in the literature, ¹²⁾ 1 was prepared from nitrobenzene, diarsenic trioxide, and sodium hydroxide (yield 65%): mp 34—35 °C (35.5—36.6 °C). ¹²⁾

Reaction of Azoxybenzene (1) with Dichlorocarbene (2) for Isolation of the Products. The preparative procedure was as follows: A solution of 5.95 g (30.0 mmol) of 1, 0.204 g (0.76 mmol) of 18-crown-6, and 50.0 g (446 mmol) of aqueous KOH (50%) was added to an Erlenmeyer flask with a reflux condenser and a thermometer placed on a heating plate. The flask was covered with aluminium foil in order to shield it from light.

After the chloroform layer was filtered and concentrated, by aqueous H₂SO₄ (5N) and extracted with chloroform. Then, the extract was dried overnight over anhydrous MgSO₄. After the chloroform layer was filtered and concentrated, the residue was processed by column chromatography (silica gel [Wako gel C-200]-benzene).

In addition, 4 was seperated from unreacted 1, 5, and 6, using a column [silica gel-ligroin (bp 80—100 °C)], and purified by reduced distillation [bp 70—72 °C/2.66 Pa⁸].

The ligroin fraction containing unreacted 1, 5, and 6 was processed by column chromatography [firstly, silica gel-benzene-ligroin (4:1 v/v), and secondly, silica gel-benzene-acetone (9:1 v/v)] giving the 6 fraction. It was concentrated and the residue was recrystallized from acetone, giving pure 6.

After the residual ligroin fraction was concentrated, the residue was subjected to fractional crystallization from methanol, giving pure 1 (mp 35—36 °C) and 5 (mp 67.5—68 °C)

2,2,3,3-Tetrachloro-1-phenylaziridine (4); bp 70—72 °C/2.66 Pa (70—72 °C/Pa).8)

2-Hydroxy-1-phenylbenzimidazole (6); mp 210 °C; M+ 210; NMR (DMSO- d_6) δ =11.1 (1H, s, broad, OH and NH), 7.7 (5H, s, 1-phenyl), and 7.2—7.5 (4H, m, phenyl); IR (KBr) 3400, 3100, 1750—1660, 1600, 1450, 760, 740, and 690 cm⁻¹; Anal. (C₁₃H₁₀N₂O) C. H. N. The chemical shift at δ =11.1 and the absorption band at 1750—1660 cm⁻¹ clearly indicate that there are two tautomers (6 and 2-oxo-1-phenyl-2,3-dihydrobenzimidazole).

Reaction of Azobenzene (5) with Dichlorocarbene (2) for Isolation of the Products.

The preparative procedure was the same as that involved in the reaction of 1 with 2.

Determination of Products. After the reaction was

completed, the mixture was neutralized with aqueous H₂SO₄ (5M (1M=1 mol dm⁻³)) to pH 6—7 and extracted with two 200 ml portions of chloroform. Then, the chloroform layer was dried over anhydrous MgSO₄.

After the chloroform layer was filtered and the filtrate was concentrated, the residue was diluted exactly to 50 ml with a mixed solvent [methanol-chloroform (7:3 v/v)]. A 5-ml portion of the solution was analyzed by HPLC under the following conditions to determine 6: Column JASCO SC-02L (silica gel) $0.46\phi \times 25$ cm, flow rate 1.0 ml/min, wave length 290 nm, solvent methanol- H_2O (6:4 v/v), internal standard biphenyl.

The residual 45-ml solution was concentrated and subjected to column chromatography [silica gel (Wako gel C-200)-benzene] to remove residual tarry matter.

After the eluent was concentrated, it was diluted to 20 ml with a mixed solvent [methanol-chloroform (7:3 v/v)]. The solution was subjected to GLC (HITACHI 164) to determine 4, unreacted 1, and 5. The operating conditions were as follows: column $(0.5\phi\times100 \text{ cm})$ Celite 545 impregnated with SE-30 (silicone) (10 wt%), column temperature 120 °C (for 4) and 250 °C (for 1 and 5), flow rate 20 (for 4) and 10 ml/min (for 1 and 5), carrier gas He; internal standard azobenzene (5) (for 4) and benzyl benzoate (for 1 and 5).

References

- 1) C. M. Starks, J. Am. Chem. Soc., 93, 195 (1971).
- 2) M. Makosza and M. Wawrzyniewicz, *Tetrahedron Lett.*, 4659 (1969).
- 3) S. Kwon, Y. Nishimura, M. Ikeda, and Y. Tamura, Synthesis, 249 (1976).
- 4) T. Saraie, T. Ishiguro, K. Kawashima, and K. Morita, Tetrahedron Lett., 2121 (1973).
- 5) M. Makosza and A. Kacprowicz, Roxz. Chem., 48, 2929 (1974).
- 6) I. Tabushi, Z. Yoshida, and N. Takahashi, J. Am. Chem. Soc., 93, 1820 (1971).
- 7) I. Tabushi, Z. Yoshida, and N. Takahashi, J. Am. Chem. Soc., 92, 6670 (1970).
- 8) D. Seyferth, W. Tronich, and H.-m. Shin, J. Org. Chem., 39, 158 (1974).
- 9) E. E. Schweizer and G. J. O'Neill, J. Org. Chem., 28, 2460 (1963).
- 10) R. Oda, M. Mieno, and Y. Hayashi, Tetrahedron Lett., 2363 (1967).
- 11) T. Sasaki, S. Eguchi, and T. Ogawa, Heterocycles, 3, 193 (1975).
- 12) J. S. Buch and W. S. Ide, *Org. Synth.*, Coll. Vol. II, 57 (1948).